Главная » Органы чувств » Пётр Гаряев. Лингвистико-волновой геном

Пётр Гаряев. Лингвистико-волновой геном

Происхождение, то есть были приобретены предками эукариот лишь однажды.

На основании сходства в последовательностях нуклеотидов ДНК ближайшими родственниками митохондрий среди ныне живущих прокариот считают альфа-протеобактерий (в частности, выдвигалась гипотеза, что к митохондриям близки риккетсии). Сравнительный анализ геномов митохондрий показывает, что в ходе эволюции происходило постепенное перемещение генов предков современных митохондрий в ядро клетки. Необъяснимыми с эволюционной точки зрения остаются некоторые особенности митохондриальной ДНК (например, довольно большое число интронов , нетрадиционное использование триплетов и другие). Ввиду ограниченного размера митохондриального генома бо́льшая часть митохондриальных белков кодируется в ядре. При этом бо́льшая часть митохондриальных тРНК кодируются митохондриальным геномом.

Формы и число молекул митохондриальной ДНК

У большинства изученных организмов митохондрии содержат только кольцевые молекулы ДНК, у некоторых растений одновременно присутствуют и кольцевые, и линейные молекулы, а у ряда протистов (например, инфузорий) имеются только линейные молекулы.

У растений каждая митохондрия содержит несколько молекул ДНК разного размера, которые способны к рекомбинации.

При половом размножении митохондрии, как правило, наследуются исключительно по материнской линии, митохондрии сперматозоида обычно разрушаются после оплодотворения. Кроме того, большая часть митохондрий сперматозоида находятся в основании жгутика , которое при оплодотворении иногда теряется. В 1999 году было обнаружено, что митохондрии сперматозоидов помечены убиквитином (белком-меткой, которая приводит к разрушению отцовских митохондрий в зиготе) .

Так как митохондриальная ДНК не является высококонсервативной и имеет высокую скорость мутирования, она является хорошим объектом для изучения филогении (эволюционного родства) живых организмов. Для этого определяют последовательности митохондриальной ДНК у разных видов и сравнивают их при помощи специальных компьютерных программ и получают эволюционное древо для изученных видов. Исследование митохондриальных ДНК собак позволило проследить происхождение собак от диких волков . Исследование митохондриальной ДНК в популяциях человека позволило вычислить «митохондриальную Еву », гипотетическую прародительницу всех живущих в настоящее время людей.

Наследование по отцовской линии

Для некоторых видов показана передача митохондриальной ДНК по мужской линии, например, у мидий . Наследование митохондрий по отцовской линии также описано для некоторых насекомых, например, для дрозофилы , медоносных пчел и цикад .

Существуют также данные о митохондриальном наследовании по мужской линии у млекопитающих. Описаны случаи такого наследования для мышей, при этом митохондрии, полученные от самца, впоследствии отторгаются. Такое явление показано для овец и клонированного крупного рогатого скота.

Наследование по отцовской линии у людей

До недавнего времени считалось, что митохондрии человека наследуются только по материнской линии. Был известен лишь один-единственный случай пациента, у которого в 2002 году достоверно обнаружили отцовскую митохондриальную ДНК .

Лишь недавнее исследование 2018 года показало, что митохондриальная ДНК человека иногда всё же может передаваться и по отцовской линии. Небольшое количество митохондрий отца может попасть в яйцеклетку матери вместе с цитоплазмой сперматозоида, но, как правило, отцовские митохондрии после этого из зиготы исчезают. Однако, было обнаружено, что у некоторых людей существует «мутация, которая помогает выживать митохондриям отца» .

Геном митохондрий

У млекопитающих каждая молекула мтДНК содержит 15000-17000 пар оснований (у человека 16565 пар нуклеотидов - исследование закончено в 1981 году, по другому источнику 16569 пар ) и содержит 37 генов - 13 кодируют белки, 22 - гены тРНК , 2 - рРНК (по одному гену для 12S и 16S рРНК). Другие многоклеточные животные имеют схожий набор митохондриальных генов, хотя некоторые гены могут иногда отсутствовать. Генный состав мтДНК разных видов растений, грибов и особенно протистов различается более значительно. Так, у жгутиконосца-якобиды Reclinomonas americana найден наиболее полный из известных митохондриальных геномов: он содержит 97 генов , в том числе 62 гена, кодирующих белки (27 рибосомальных белков, 23 белка, участвующих в работе электрон-транспортной цепи и в окислительном фосфорилировании , а также субъединицы РНК-полимеразы).

Один из наиболее маленьких митохондриальных геномов имеет малярийный плазмодий (около 6.000 п.о., содержит два гена рРНК и три гена, кодирующих белки).

Недавно открытые рудиментарные митохондрии (митосомы) некоторых протистов (дизентерийной амёбы , микроспоридий и лямблий) не содержат ДНК.

Митохондриальные геномы различных видов грибов содержат от 19 431 (делящиеся дрожжи Schizosaccharomyces pombe ) до 100 314 (сордариомицет Podospora anserina ) пар нуклеотидов .

Некоторые растения имеют огромные молекулы митохондриальной ДНК (до 25 миллионов пар оснований), при этом содержащие примерно те же гены и в том же количестве, что и меньшие мтДНК. Длина митохондриальной ДНК может широко варьировать даже у растений одного семейства. В митохондриальной ДНК растений имеются некодирующие повторяющиеся последовательности.

Геном человека содержит только по одному промотору на каждую комплементарную цепь ДНК .

Геном митохондрий человека кодирует следующие белки и РНК:

Белки или РНК Гены
NADH-дегидрогеназа
(комплекс I)
MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-ND6
Кофермент Q - цитохром c редуктаза/Цитохром b
(комплекс III)
MT-CYB
цитохром c оксидаза
(комплекс IV)
MT-CO1, MT-CO2, MT-CO3
АТФ-синтаза MT-ATP6, MT-ATP8
рРНК MT-RNR1 (12S), MT-RNR2 (16S)
тРНК MT-TA, MT-TC, MT-TD, MT-TE, MT-TF, MT-TG, MT-TH, MT-TI, MT-TK, MT-TL1 , MT-TL2, MT-TM, MT-TN, MT-TP, MT-TQ, MT-TR, MT-TS1, MT-TS2, MT-TT, MT-TV, MT-TW, MT-TY, MT1X

Особенности митохондриальной ДНК

Кодирующие последовательности (кодоны) митохондриального генома имеют некоторые отличия от кодирующих последовательностей универсальной ядерной ДНК.

Так, кодон AUA кодирует в митохондриальном геноме метионин (вместо изолейцина в ядерной ДНК), кодоны AGA и AGG - терминаторные кодоны (в ядерной ДНК кодируют аргинин), кодон UGA в митохондриальном геноме кодирует триптофан .

Если говорить точнее, то речь идёт не о митохондриальной ДНК, а о мРНК , которая списывается (транскрибируется) с этой ДНК перед началом синтеза белка. Буква U в обозначении кодона обозначает уридин , который при транскрипции гена в РНК заменяет тимин .

Количество генов тРНК (22 гена) меньше, чем в ядерном геноме с его 32 генами тРНК .

В человеческом митохондриальном геноме информация настолько сконцентрирована, что в последовательностях, кодирующих мРНК, как правило, частично удалены нуклеотиды, соответствующие 3"-концевым терминаторным кодонам .

Применение

Кроме использования при построении различных филогенетических теорий, изучение митохондриального генома - основной инструмент при проведении идентификации . Возможность идентификации связана с существующими в митохондриальном геноме человека групповыми и даже индивидуальными различиями.

Последовательность участка гена субъединицы I цитохром с-оксидазы, кодируемого в митохондриальной ДНК, широко используется в проектах, связанных с ДНК-баркодированием животных - определением принадлежности организма к тому или иному таксону на основе коротких маркеров в его ДНК . Для баркодирования растений используется преимущественно комбинация двух маркёров в пластидной ДНК .

Группа Шухрата Миталипова из центра эмбриональных клеток и генной терапии Орегонского университета разработала метод замены митохондриальной ДНК для лечения наследственных митохондриальных заболеваний. Сейчас в Великобритании начаты клинические испытания этого метода, получившего неофициальное название «3-parent baby technique» - «ребенок от трех родителей». Известно также о рождении в результате этой процедуры ребенка в Мексике .

Примечания

  1. Джинкс Д., Нехромосомная наследственность, пер. с англ., М., 1966; Сэджер Р., Гены вне хромосом, в кн.: Молекулы и клетки, пер. с англ., М., 1966.
  2. Nass, M.M. & Nass, S. (1963 at the Wenner-Gren Institute for Experimental Biology, Stockholm University, Stockholm , Sweden): Intramitochondrial Fibers with DNA characteristics (PDF). In: J. Cell. Biol. Bd. 19, S. 593-629. PMID 14086138
  3. Ellen Haslbrunner, Hans Tuppy and Gottfried Schatz (1964 at the Institut for Biochemistry at the Medical Faculty of the University of Vienna in Vienna , Австрия): «Deoxyribonucleic Acid Associated with Yeast Mitochondria» (PDF) Biochem. Biophys. Res. Commun. 15, 127-132.
  4. Iborra F. J., Kimura H., Cook P. R. The functional organization of mitochondrial genomes in human cells (англ.) // BMC Biol. (англ.) русск. : journal. - 2004. - Vol. 2 . - P. 9 . - DOI :10.1186/1741-7007-2-9 . - PMID 15157274 .
  5. Дымшиц Г. М. Сюрпризы митохондриального генома. Природа, 2002, N 6
  6. Wiesner R. J., Ruegg J. C., Morano I. Counting target molecules by exponential polymerase chain reaction, copy number of mitochondrial DNA in rat tissues (англ.) // Biochim Biophys Acta. (англ.) русск. : journal. - 1992. - Vol. 183 . - P. 553-559 . - PMID 1550563 .
  7. doi:10.1016/j.exppara.2006.04.005 (недоступная ссылка)
  8. Alexeyev, Mikhail F.; LeDoux, Susan P.; Wilson, Glenn L. Mitochondrial DNA and aging (неопр.) // Clinical Science. - 2004. - July (т. 107 , № 4 ). - С. 355-364 . - DOI :10.1042/CS20040148 . - PMID 15279618 .
  9. Ченцов Ю. С. Общая цитология. - 3-е изд. - МГУ, 1995. - 384 с. - ISBN 5-211-03055-9 .
  10. Sutovsky, P., et. al. Ubiquitin tag for sperm mitochondria (англ.) // Nature . - Nov. 25, 1999. - Vol. 402 . - P. 371-372 . - DOI :10.1038/46466 . - PMID 10586873 . Discussed in
  11. Vilà C., Savolainen P., Maldonado J. E., and Amorin I. R. Multiple and Ancient Origins of the Domestic Dog (англ.) // Science : journal. - 1997. - 13 June (vol. 276 ). - P. 1687-1689 . - ISSN 0036-8075 . - DOI :10.1126/science.276.5319.1687 . - PMID 9180076 .
  12. Hoeh W. R., Blakley K. H., Brown W. M. Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA (англ.) // Science: journal. - 1991. - Vol. 251 . - P. 1488-1490 . - DOI :10.1126/science.1672472 . - PMID 1672472 .
  13. Penman, Danny . Mitochondria can be inherited from both parents , NewScientist.com (23 августа 2002). Дата обращения 5 февраля 2008.
  14. Kondo R., Matsuura E. T., Chigusa S. I. Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method (англ.) // Genet. Res. (англ.) русск. : journal. - 1992. - Vol. 59 , no. 2 . - P. 81-4 . - PMID 1628820 .
  15. Meusel M. S., Moritz R. F. Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs (англ.) // Curr. Genet. : journal. - 1993. - Vol. 24 , no. 6 . - P. 539-543 . - DOI :10.1007/BF00351719 . - PMID 8299176 .
  16. Fontaine, K. M., Cooley, J. R., Simon, C. Evidence for paternal leakage in hybrid periodical cicadas (Hemiptera: Magicicada spp.) (исп.) // PLoS One. : diario. - 2007. - V. 9 . - P. e892 . - DOI :10.1371/journal.pone.0000892 .
  17. Gyllensten U., Wharton D., Josefsson A., Wilson A. C. Paternal inheritance of mitochondrial DNA in mice (англ.) // Nature. - 1991. - Vol. 352 , no. 6332 . - P. 255-257 . - DOI :10.1038/352255a0 . - PMID 1857422 .
  18. Shitara H., Hayashi J. I., Takahama S., Kaneda H., Yonekawa H. Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage (англ.) // Genetics: journal. - 1998. - Vol. 148 , no. 2 . - P. 851-857 . - PMID 9504930 .

Митохондрии содержатся не только в клетках растений, но также и в клетках животных и грибов. Эти органеллы более универсальны, чем пластиды. Впервые ДНК в митохондриях были открыты в 1963 году (М. Наас) сразу же после открытия ДНК в пластидах. Несмотря на сходство функций и структуры митохондрий всех трех царств эукариот, их генетическая организация достаточно сильно различается, поэтому обычно организацию геномов митохондрий у этих царств рассматривают отдельно, выявляя при этом общие черты организации генома.

Физико-химический состав ДНК митохондрий у различных царств различен. У растений он довольно постоянен: от 45 до 47 % ДНК состоит из ГЦ-пар. У животных и грибов -- варьирует более значительно: от 21 до 50 % ГЦ-пар.

У многоклеточных животных размеры генома митохондрий колеблются от 14.5 до 19.5 т.п.н. Практически, это всегда одна кольцевая молекула ДНК. Например, ДНК митохондрий человека -- кольцевая молекула размером 16 569 пар нуклеотидов. Этот размер можно выразить и в других единицах -- в виде молекулярной массы -- 10 6 дальтон или в виде длины контура молекулы -- 5 мкм. Первичная структура этой молекулы полностью определена. В митохондриях содержится собственный аппарат трансляции -- т.е. собственные рибосомы 70S, похожие на хлоропластные или прокариотические и состоящие из двух субъединиц, собственные матричные РНК, необходимые ферменты и белковые факторы. В их геноме закодированы 12S- и 16S - рибосомальные РНК, а так же 22 транспортные РНК. Кроме того, митохондриальная ДНК кодирует 13 полипептидов, из которых 12 идентифицированы. Все кодирующие последовательности расположены прямо друг за другом. В крайнем случае, они разделены лишь несколькими нуклеотидами. Некодирующие последовательности, т.е. интроны отсутствуют. Вслед за кодирующей последовательностью почти всегда находится ген транспортной РНК. Например, порядок таков: транспортная РНК фенилаланина -- ген 12S рибосомальной РНК -- транспортная РНК валина -- ген 16S рибосомальной РНК -- транспортная РНК лейцина и т.д. Такой порядок характерен не только для митохондрий человека, он очень консервативен и характерен для всех животных: дрозофилы, быка, мыши, птиц, рептилий и др. животных.

Большая часть генов расположена в тяжелой цепи, в легкой цепи только гены восьми транспортных РНК и один структурный ген. Таким образом, в отличие от всех других геномов, в геноме митохондрий обе цепи смысловые.

Хотя порядок генов у митохондрий животных и одинаков, выяснено, что сами гены обладают различной консервативностью. Наиболее вариабельна последовательность нуклеотидов участка начала репликации и ряд структурных генов. Наиболее консервативные последовательности расположены в генах рибосомальных РНК и некоторых структурных генах, в том числе в кодирующей последовательности АТФ-азы.

Следует отметить, что универсальность генетического кода нарушена в геноме митохондрий. Например, митохондрии человека используют триплет AUA в качестве кодона для метионина, а не для изолейцина, как у всех, а триплет UGA, используемый в стандартном генетическом словаре как терминирующий кодон, у митохондрий кодирует триптофан.

В целом митохондриальная ДНК человека выглядит так же, как и других млекопитающих: мыши и быка. Несмотря на то, что это далеко не близкие виды -- размеры их митохондриальных ДНК довольно близки между собой: 16 569; 16 295; и 16 338 пар оснований, соответственно. Гены транспортной РНК разделяют некоторые смысловые гены. Наиболее важные из структурных генов -- гены цитохромоксидазы, NADH-дегидрогеназы, цитохром-С оксидоредуктазы и АТФ-синтетазы (рис. 4).

На карте митохондриального генома человека, кроме генов показано и пять хорошо известных болезней человека, наследующихся по материнской линии и вызванных мутациями в митохондриальном геноме.

Так, например, болезнь Лебера -- атрофия зрительного нерва -- вызвана мутацией в гене NADH дегидрогеназы. Эта же болезнь может быть вызвана и мутацией в гене цитохрома b и других локусов. Всего известно нарушение четырех локусов, способных вызвать тот же мутантный фенотип. Кроме того, на этой же карте показано еще четыре болезни, связанные с дефектами мозга, мышц, сердца, почек и печени. Все эти болезни наследуются по материнской линии, и если мать имеет не только дефектные, но и нормальные митохондриальные ДНК и митохондрии, то, происходит сортировка мутантных и нормальных органелл, и потомство может иметь и те, и другие органеллы в различных пропорциях, и мы можем наблюдать также и соматическое расщепление, когда отдельные части тела не будут иметь этих дефектов.

Рис. 4 Структура митохондриального генома млекопитающих, основанная на полном сиквенсе митохондриальной ДНК человека, мыши и быка

Таким образом, небольшой по размерам митохондриальный геном животных может кодировать чрезвычайно важные функции организма и в значительной степени определять его нормальное развитие.

Так же, как и геном пластид, геном митохондрий кодирует только часть митохондриальных полипептидов (табл. 1) и наблюдается феномен двойного кодирования. Например, часть субъединиц АТФ-азного комплекса кодируется ядром, в то время как другая часть -- геномом митохондрий. Большая часть генов, кодирующих рибосомальные миохондриальные РНК и белки, а также ферменты транскрипции и трансляции, кодируется ядром клетки.

05.05.2015 13.10.2015

Все сведения о строении организма человека и его предрасположенности к болезням зашифрованы в виде молекул ДНК. Основная информация находится в ядрах клеток. Однако 5% ДНК локализовано в митохондриях.

Что называют митохондриями?

Митохондрии являются клеточными органеллами эукариот, которые нужны для того, чтобы осуществить превращение энергии, заключенной в питательных веществах в соединения, которые могут усваивать клетки. Поэтому они нередко называются «энергетическими станциями», ведь без них существование организма невозможно.
Своя генная информация у данных органелл появилась вследствие того, что ранее они представляли собой бактерии. После их попадания в клетки организма-хозяина, они не смогли сохранить свой геном, при этом часть собственного генома они передали клеточному ядру организма-хозяина. Поэтому сейчас их ДНК (мтДНК) содержит только часть, а именно 37 генов от исходного количества. Главным образом, в них зашифрован механизм трансформации глюкозы до соединений — углекислый газ и вода с получением энергии (АТФ и НАДФ), без которой и невозможно существование организма хозяина.

В чем уникальность мтДНК?

Главное свойство, присущее митохондриальной ДНК, заключается в возможности наследовании ее только по линии матери. При этом все дети (мужчины или женщины) могут получить митохондрии от яйцеклетки. Происходит это благодаря тому, что женские яйцеклетки содержат более высокое количество данных органелл (до 1000 раз), чем мужские сперматозоиды. Вследствие этого дочерний организм получает их только от своей матери. Поэтому и унаследование их от отцовской клетки совершенно невозможно.
Известно, что гены митохондрий передались нам из далекого прошлого — от нашей проматери — «митохондриальной Евы», являющейся общим предком всех людей планеты по материнской линии. Поэтому данные молекулы считаются самым идеальным объектом при генетических экспертизах для установления родства по линии матери.

Как происходит определение родства?

Митохондриальные гены имеют множество точечных мутаций, благодаря чему они очень вариабельны. Это и позволяет установить родство. На генетической экспертизе с использованием специальных генетических анализаторов – секвенаторов, определяются индивидуальные точечные нуклеотидные изменения генотипа, их сходство или различие. У людей, не имеющих родственных связей по линии матери геномы митохондрий различаются существенно.
Определение родства возможно благодаря удивительным характеристикам митохондриального генотипа:
они не подвержены рекомбинациям, поэтому молекулы изменяются лишь в процессе мутирования, который может происходить в течение тысячелетия;
возможность выделения из любых биологических материалов;
при недостатке биоматериала или деградации ядерного генома, мтДНК может стать единственным источником для проведения анализов, благодаря огромному количеству ее копий;
вследствие большого количества мутаций по сравнению с ядерными генами клеток, достигается высокая точность при проведении анализа генного материала.

Что возможно установить при генной экспертизе?

Генная экспертиза мтДНК поможет при диагностике следующих случаев.
1. Для установления родства между людьми по линии матери: между дедом (или бабушкой) с внуком, братом с сестрой, дядей (или тетей) с племянником.
2. При анализе небольшого количества биоматериала. Ведь мтДНК содержится у каждой клетки в значительном количестве (100 — 10 000), тогда как ядерная — только по 2 копии у каждой 23 имеющихся хромосом.
3. При идентификации древнего биоматериала – сроком хранения более, чем тысячелетнего периода. Именно благодаря данному свойству ученые смогли идентифицировать генный материал из останков членов семьи Романовых.
4. При отсутствии иного материала, ведь даже один волос содержит значительное количество мтДНК.
5. При определении принадлежности генов к генеалогическим ветвям человечества (африканской, американской, ближневосточной, европейской гаплогруппе и другим), благодаря чему возможно определение происхождения человека.

Митохондриальные заболевания и их диагностика

Митохондриальные заболевания проявляются в основном за счет дефектов мтДНК клеток, связанных со значительной подверженности данных органелл к мутациям. Сегодня насчитывается уже порядка 400 болезней, связанных с их дефектами.
В норме каждая клетка могут включать как нормальные митохондрии, так и с определенными нарушениями. Часто признаки заболевания при этом никак не проявляют себя. Однако при ослаблении процесса синтеза энергии в них наблюдается проявление таких болезней. Данные заболевания, прежде всего, связаны с нарушением мышечной или нервной систем. Как правило, при таких болезнях наблюдается позднее начало клинических проявлений. Частота возникновения данных болезней составляет 1:200 человек. Известно, что наличие мутаций митохондрий способно вызвать нефротический синдром при беременности женщины и даже внезапную смерть младенца. Поэтому, исследователями предпринимаются активные попытки решения данных проблем, связанных с лечением и передачей генетических заболеваний этого типа от матерей к детям.

Как связано старение с митохондриями?

Реорганизацию генома данных органелл обнаружили и при анализе механизма старения организма. Сотрудниками Университета Хопкинса опубликованы результаты, проведенные при наблюдениях за показателями крови 16000 пожилых людей из Америки, демонстрирующие, что снижение количества мтДНК было напрямую взаимосвязано с возрастом пациентов.

Большинство из рассмотренных вопросов сегодня стало основой новой науки – «митохондриальной медицины», сформировавшейся в виде отдельного направления в 20 столетии. Прогнозирование и лечение заболеваний, связанных с нарушением генома митохондрий, генетическая диагностика – вот первостепенные её задачи.

Вступление

Со времени обнаружения в митохондриях молекул ДНК прошло четверть ве-ка, прежде чем ими заинтересовались не только молекулярные биологи и цито-логи, но и генетики, эволюционисты, а также палеонтологи и криминалисты. Такой широкий интерес спровоцировала работа А. Уилсона из Калифорнийско-го университета. В 1987 г. он опубликовал результаты сравнительного анализа ДНК митохондрий, взятых у 147 представителей разных этносов всех человече-ских рас, заселяющих пять континентов. По типу, местоположению и количес-тву индивидуальных мутаций установили, что все митохондриальные ДНК воз-никли из одной предковой последовательности нуклеотидов путем диверген-ции . В околонаучной прессе вывод этот интерпретировали крайне упрощенно - все человечество произошло от одной женщины, названной митохондриаль-ной Евой (т. к. и дочери и сыновья получают митохондрии только от матери), которая жила в Северо-Восточной Африке около 200 тыс. лет назад. Еще через 10 лет удалось расшифровать фрагмент ДНК митохондрий, выделенный из ос-танков неандертальца, и оценить время существования последнего общего предка человека и неандертальца в 500 тыс. лет назад.

Сегодня митохондриальная генетика человека интенсивно развивается как в популяционном, так и в медицинском аспекте. Установлена связь между рядом тяжелых наследственных заболеваний и дефектами в митохондриальных ДНК. Генетические изменения, ассоциированные со старением организма, наиболее выражены в митохондриях. Что же представляет из себя геном митохондрий, отличающийся у человека и других животных от такового у растений, грибов и простейших и по размеру, и по форме, и по генетической емкости? Какова роль, как работает и как возник митохондриальный геном у разных таксонов в целом и у человека в частности? Об этом и пойдет речь в моем “маленьком и самом скромном” реферате.

В матриксе митохондрий, кроме ДНК, находятся и собственные рибосомы, по многим характеристикам отличающиеся от эвкариотических рибосом, рас-положенных на мембранах эндоплазматической сети. Однако на рибосомах ми-тохондрий образуется не более 5% от всех белков, входящих в их состав. Бóль-шая часть белков, составляющих структурные и функциональные компоненты митохондрий, кодируется ядерным геномом, синтезируется на рибосомах эндо-плазматической сети и транспортируется по ее каналам к месту сборки. Таким образом, митохондрии - это результат объединенных усилий двух геномов и двух аппаратов транскрипции и трансляции. Некоторые субъединичные ферме-нты дыхательной цепи митохондрий состоят из разных полипептидов, часть ко-торых кодируется ядерным, а часть - митохондриальным геномом. Например, ключевой фермент окислительного фосфорилирования - цитохром-с-оксидаза у дрожжей состоит из трех субъединиц, кодируемых и синтезируемых в мито-хондриях, и четырех, кодируемых в ядре клетки и синтезируемых в цитоплазме. Экспрессией большинства генов митохондрий управляют определенные гены ядер.

Симбиотическая теория происхождения митохондрий

Гипотезу о происхождении митохондрий и растительных пластид из вну-триклеточных бактерий-эндосимбионтов высказал Р. Альтман еще в 1890 г. За век бурного развития биохимии , цитологии , генетики и появившейся полвека назад молекулярной биологии гипотеза переросла в теорию, основанную на бо-льшом фактическом материале. Суть ее такова: с появлением фотосинтезирую-щих бактерий в атмосфере Земли накапливался кислород - побочный продукт их метаболизма. С ростом его концентрации усложнялась жизнь анаэробных ге-теротрофов, и часть из них для получения энергии перешла от бескислородного брожения к окислительному фосфорилированию. Такие аэробные гетеротрофы могли с бóльшим КПД, чем анаэробные бактерии, расщеплять органические ве-щества, образующиеся в результате фотосинтеза. Часть свободно живущих аэ-робов была захвачена анаэробами, но не “переварена”, а сохранена в качестве энергетических станций, митохондрий. Не стоит рассматривать митохондрии как рабов, взятых в плен, чтобы снабжать молекулами АТФ не способные к ды-ханию клетки. Они скорее “существа”, еще в протерозое нашедшие для себя и своего потомства лучшее из убежищ, где можно затрачивать наименьшие уси-лия, не подвергаясь риску быть съеденными.

В пользу симбиотической теории говорят многочисленные факты:

Совпадают размеры и формы митохондрий и свободно живущих аэробных бактерий; те и другие содержат кольцевые молекулы ДНК, не связанные с гистонами (в отличие от линейных ядерных ДНК);

По нуклеотидным последовательностям рибосомные и транспортные РНК митохондрий отличаются от ядерных, демонстрируя при этом удивительное сходство с аналогичными молекулами некоторых аэробных грамотрицательных эубактерий;

Митохондриальные РНК-полимеразы, хотя и кодируются в ядре клетки, ингибируются рифампицином, как и бактериальные, а эвкариотические РНК-полимеразы нечувствительны к этому антибиотику ;

Белковый синтез в митохондриях и бактериях подавляется одними и теми же антибиотиками, не влияющими на рибосомы эвкариот;

Липидный состав внутренней мембраны митохондрий и бактериальной плазмалеммы сходен, но сильно отличается от такового наружной мембраны митохондрий, гомологичной другим мембранам эвкариотических клеток;

Кристы, образуемые внутренней митохондриальной мембраной, являются эволюционными аналогами мезосомных мембран многих прокариот;

До сих пор сохранились организмы, имитирующие промежуточные формы на пути к образованию митохондрий из бактерий (примитивная амеба Pelomyxa не имеет митохондрий, но всегда содержит эндосимбиотические бактерии).

Существует представление, что разные царства эвкариот имели разных предков и эндосимбиоз бактерий возникал на разных этапах эволюции живых организмов. Об этом же говорят отличия в строении митохондриальных гено-мов простейших, грибов, растений и высших животных. Но во всех случаях ос-новная часть генов из промитохондрий попала в ядро, возможно, с помощью мобильных генетических элементов. При включении части генома одного из симбионтов в геном другого интеграция симбионтов становится необратимой. Новый геном может создавать метаболические пути, приводящие к образова-нию полезных продуктов, которые не могут быть синтезированы ни одним из партнеров по отдельности. Так, синтез стероидных гормонов клетками коры надпочечников представляет собой сложную цепь реакций, часть которых происходит в митохондриях, а часть - в эндоплазматической сети. Захватив гены промитохондрий, ядро получило возможность надежно контролировать функции симбионта. В ядре кодируются все белки и синтез липидов наружной мембраны митохондрий, большинство белков матрикса и внутренней мембраны органелл. Самое главное, что ядро кодирует ферменты репликации, транскрип-ции и трансляции мтДНК, контролируя тем самым рост и размножение мито-хондрий. Скорость роста партнеров по симбиозу должна быть приблизительно одинаковой. Если хозяин будет расти быстрее, то с каждым его поколением число симбионтов, приходящихся на одну особь, будет уменьшаться, и, в конце концов, появятся потомки, не имеющие митохондрий. Мы знаем, что в каждой клетке организма, размножающегося половым путем, содержится много мито-хондрий, реплицирующих свои ДНК в промежутке между делениями хозяина. Это служит гарантией того, что каждая из дочерних клеток получит по крайней мере одну копию генома митохондрии.

Роль клеточного ядра в биогенезе митохондрий

У мутантных дрожжей определенного типа имеется обширная делеция в митохондриальной ДНК, что ведет к полному прекращению белкового синтеза в митохондриях; в результате эти органеллы не способны выполнять, свою функцию. Так как при росте на среде с низким содержанием глюкозы такие мутанты образуют мелкие колонии, их называют цитоплазматическими му тантами petite .

Хотя у мутантов petite нет митохондриального синтеза белков и поэтому нормальных митохондрий не образуется, тем не менее такие мутанты содержат промитохондрии, которые в известной мере сходны с обычными митохондриями, имеют нормальную наружную мембрану и внутреннюю мeмбрану со слабо развитыми кристами. В промитохондриях имеются многие ферменты, кодируемые ядерными генами и синтезируемые на рибосомах цитоплазмы, в том числе ДНК - и РНК-полимеразы, все ферменты цикла лимонной кислоты и многие белки, входящие в состав внутренней мембраны. Это наглядно демонстрирует преобладающую роль ядерного генома в биогенезе митохондрий.

Интересно отметить, что, хотя утраченные фрагменты ДНК составляют от 20 до более чем 99,9% митохондриального генома, общее количество митохондриальной ДНК у мутантов petite всегда остается на том же уровне, что и у дикого типа. Это обусловлено еще мало изученным процессом aмплификации ДНК, в результате которого образуется молекула ДНК, состоящая из тандемных повторов одного и того же участка и равная по величине нормальной молекуле. Например, митохондриальная ДНК мутанта petite, сохранившая 50% нуклеотидной последовательности ДНК дикого типа, будет состоять из двух повторов, тогда как молекула, сохранившая только 0,1% генома дикого типа, будет построена из 1000 копий оставшегося фрагмента. Таким образом, мутанты petite могут быть использованы для получения в большом количестве определенных участков митохондриальной ДНК, которые, можно сказать, клонируются самой природой.

Хотя биогенез органелл контролируется главным образом ядерными генами, сами органеллы тоже, судя по некоторым данным, оказывают какое-то регулирующее влияние по принципу обратной связи; во всяком случае так обстоит дело с митохондриями. Если блокировать синтез белка в митохондриях интактных клеток, то в цитоплазме начинают в избытке образовываться ферменты участвующие в митохондриальном синтезе ДНК, РНК и белков, как будто клетка пытается преодолеть воздействие блокирующего агента. Но, хотя существование какого-то сигнала со стороны митохондрий и не вызывает сомнений, природа его до сих пор не известна.

По ряду причин механизмы биогенеза митохондрий изучают сейчас в большинстве случаев на культурах Saccharomyces carlsbergensis (пивные дрожжи и S . cerevisiae (пекарские дрожжи). Во-первых, при росте на глюкозе эти дрожжи обнаруживают уникальную способность существовать только за счет гликолиза, т. е. обходиться без функции митохондрий. Это дает возможность изучать мутации в митохондриальной и ядерной ДНК, препятствующие развитию этих органелл. Такие мутации летальны почти у всех других организмов. Во-вторых, дрожжи - простые одноклеточные эукариоты - легко культивировать и подвергать биохимическому исследованию. И наконец, дрожжи могут размножаться как в гаплоидной, так и в диплоидной фазе, обычно бесполым способом-почкованием (асимметричный митоз). Но у дрожжей встречается и половой процесс: время от времени две гаплоидные клетки сливаются, образуя диплоидную зиготу, которая затем либо делится путем митоза, либо претерпевает мейоз и снова дает гаплоидные клетки. Контролируя в ходе эксперимента чередование бесполого и полового раз-множения, можно многое узнать о генах, ответственных за функцию митохондрий. С помощью этих методов можно, в частности, выяснить, локализованы ли такие гены в ядерной ДНК или в митохондриальной, так как мутации митохондриальных генов не наследуются по законам Менделя, которым подчиняется наследование ядерных генов.

Транспортные системы митохондрий

Большая часть белков, содержащихся в митохондриях и хлоропластах импор-тируется в эти органеллы из цитозоля. В связи с этим возникают два вопроса: как клетка направляет белки к надлежащей органелле и каким образом эти белки проникают в нее?

Частичный ответ был получен при изучении транспорта в строму хлоропласта малой субъединицы (S) фермента рибулозо-1,5-бисфосфат-карбокси лазы. Если мРНК, выделенную из цитоплазмы одноклеточной водоросли Chlamydomonas или из листьев гороха, ввести в качестве матрицы в белоксинтезирующую систему in vitro, то один из многих образующихся белков будет связываться специфическим анти-S-антителом. S-белок, синтезируемый in vitro, называют пpo-S, так как он больше обычного S-белка примерно на 50 аминокислотных остатков. При инкубации белка пpo-S с интактными хлоропластами он проникает в органеллы и превращается там под действием пептидазы в S-белок. Затем S-белок связывается с большой субъединицей рибулозо-1,5-бисфосфат-карбоксилазы, синтезируемой на рибосомах хлоропласта, и образует с нею в строме хлоропласта активный фермент.

Механизм переноса S-белка неизвестен. Полагают, что пpo-S связывается с белком-рецептором, находящимся на наружной мембране хлоропласта или в месте контакта наружной и внутренней мембран, а затем переносится в строму через трансмембранные каналы в результате процесса, требующего затраты энергии.

Сходным образом осуществляется транспорт белков внутрь митохондрий. Если очищенные митохондрии дрожжей инкубировать с клеточным экстрактом, содержащим только что синтезированные радиоактивные дрожжевые белки, то можно наблюдать, что митохондриальные белки, кодируемые ядерным геномом, отделяются от немитохондриальных белков цитоплазмы и избирательно включаются в митохондрии-так же, как это происходит в интактной клетке. При этом белки наружной и внутренней мембран, матрикса и межмембранного пространства находят свой путь к соответствующему компартменту митохондрии.

Многие из вновь синтезированных белков, предназначенных для внутренней мембраны, матрикса и межмембранного пространства, имеют на своем N-конце лидерный пептид, который во время транспортировки отщепляется специфической протеазой, находящейся в матриксе. Для переноса белков в эти три митохондриальных компартмента необходима энергия электрохимического протонного градиента, создаваемого на внутренней мембране. Механизм переноса белков для наружной мембраны иной: в этом случае не требуется ни затрат энергии, ни протеолитического расщепления более длинного белка-предшественника. Эти и другие наблюдения позволяют думать, что все четыре группы митохондриальных белков транспортируются в органеллу с помощью следующего механизма: предполагается, что все белки, кроме тех, которые предназначены для наружной мембраны, включаются во внутреннюю мембрану в результате процесса, требующего затраты энергии и происходящего в местах контакта наружной и внутренней мембран. По-видимому, после этого первоначального включения белка в мембрану он подвергается протеолитическому расщеплению, которое приводит к изменению его конформации; в зависимости от того, как изменится конформация, белок либо закрепляется в мембране, либо «выталкивается» в матрикс или в межмембранное пространство.

Перенос белков через мембраны митохондрий и хлоропластов в принципе аналогичен переносу их через мембраны эндоплазматического ретикулума. Однако здесь есть несколько важных отличий. Во-первых, при транспорте в матрикс или строму белок проходит как через наружную, так и через внутреннюю мембрану органеллы, тогда как при переносе в просвет эндоплазматического ретикулума молекулы проходят только через одну мембрану. Кроме того, перенос белков в ретикулум осуществляется с помощью механизма направленного выведения (vectorial discharge)-он начинается тогда, когда белок еще не полностью сошел с рибосомы (котрансляционный импорт), а перенос в митохондрии и хлоропласты происходит уже после того, как синтез белковой молекулы будет полностью завершен (посттрансляционный импорт).

Несмотря на эти различия, и в том и в другом случае клетка синтезирует белки-предшественники, содержащие сигнальную последовательность, которая определяет, к какой мембране направится данный белок. По-видимому, во многих случаях эта последовательность отщепляется от молекулы-предшественника после завершения транспортного процесса. Однако некоторые белки сразу синтезируются в окончательном виде. Полагают, что в таких случаях сигнальная последовательность заключена в полипептидной цепи готового белка. Сигнальные последовательности еще плохо изучены, но, вероятно, должно быть несколько типов таких последовательностей, каждый из которых определяет перенос белковой молекулы в определенную область клетки. Например, в растительной клетке некоторые из белков, синтез которых начинается в цитозоле, транспортируются затем в митохондрии, другие - в хлоропласты, третьи - в пероксисомы, четвертые - в эндоплазматический ретикулум. Сложные процессы, приводящие к правильному внутриклеточному распределению белков, только сейчас становятся понятными.

Помимо нуклеиновых кислот и белков для построения новых митохондрий нужны липиды. В отличие от хлоропластов митохондрии получают бóльшую часть своих липидов извне. В животных клетках фосфолипиды, синтезированные в эндоплазматическом ретикулуме, транспортируются к наружной мембране митохондрий с помощью особых белков, а затем включаются во внутреннюю мембрану; как полагают, это происходит в месте контакта двух мембран. Основная реакция биосинтеза липидов, катализируемая самими митохондриями, - это превращение фосфатидной кислоты в фосфолипид кардиолипин, который содержится главным образом во внутренней митохондриальной мембране и составляет около 20% всех ее липидов.

Размеры и форма митохондриальных геномов

К настоящему времени прочитано более 100 разных геномов митохондрий. На-бор и количество их генов в митохондриальных ДНК, для которых полностью определена последовательность нуклеотидов, сильно различаются у разных ви-дов животных, растений, грибов и простейших. Наибольшее количество генов обнаружено в митохондриальном геноме жгутикового простейшего Rectinomo-nas americana - 97 генов, включая все кодирующие белок гены, найденные в мтДНК других организмов. У большинства высших животных геном митохон-дрий содержит 37 генов: 13 для белков дыхательной цепи, 22 для тРНК и два для рРНК (для большой субъединицы рибосом 16S рРНК и для малой 12S рРНК). У растений и простейших, в отличие от животных и большинства гри-бов, в митохондриальном геноме закодированы и некоторые белки, входящие в состав рибосом этих органелл. Ключевые ферменты матричного полинуклеоти-дного синтеза, такие как ДНК-полимераза (осуществляющая репликацию мито-хондриальной ДНК) и РНК-полимераза (транскрибирующая геном митохон-дрий), зашифрованы в ядре и синтезируются на рибосомах цитоплазмы. Этот факт указывает на относительность автономии митохондрий в сложной иерар-хии эвкариотической клетки.

Геномы митохондрий разных видов отличаются не только по набору ге-нов, порядку их расположения и экспрессии, но по размеру и форме ДНК. По-давляющее большинство описанных сегодня митохондриальных геномов пред-ставляет собой кольцевые суперспирализованные двуцепочечные молекулы ДНК. У некоторых растений наряду с кольцевыми формами имеются и линей-ные, а у некоторых простейших, например инфузорий, в митохондриях обнару-жены только линейные ДНК.

Как правило, в каждой митохондрии содержится несколько копий ее ге-нома. Так, в клетках печени человека около 2 тыс. митохондрий, и в каждой из них - по 10 одинаковых геномов. В фибробластах мыши 500 митохондрий, со-держащих по два генома, а в клетках дрожжей S. cerevisiae - до 22 митохон-дрий, имеющих по четыре генома.

https://pandia.ru/text/78/545/images/image002_21.jpg" align="left" width="386 height=225" height="225">Рис 2. Схема образования линейных (А), кольцевых (Б), цепных (В) олигомеров мтДНК. ori - район начала репликации ДНК.

Размер генома митохондрий разных организмов колеблется от менее 6 тыс. пар нуклеотидов у малярийного плазмодия (в нем, помимо двух генов рРНК, содержится только три гена, кодирующих белки) до сотен тысяч пар ну-клеотидов у наземных растений (например, у Arabidopsis thaliana из семейства крестоцветных 366924 пар нуклеотидов). При этом 7-8-кратные различия в ра-змерах мтДНК высших растений обнаруживаются даже в пределах одного се-мейства. Длина мтДНК позвоночных животных отличается незначительно: у человека - 16569 пар нуклеотидов, у свиньи - 16350, у дельфина - 16330, у шпорцевой лягушки Xenopus laevis - 17533, у карпа - 16400. Эти геномы схо-дны также и по локализации генов, большинство которых располагаются встык; в ряде случаев они даже перекрываются, обычно на один нуклеотид, так что по-следний нуклеотид одного гена оказывается первым в следующем. В отличие от позвоночных, у растений, грибов и простейших мтДНК содержат до 80% не-кодирующих последовательностей. У разных видов порядок генов в геномах митохондрий отличается.

Высокая концентрация активных форм кислорода в митохондриях и сла-бая система репарации увеличивают частоту мутаций мтДНК по сравнению с ядерной на порядок. Радикалы кислорода служат причиной специфических за-мен Ц®Т (дезаминирование цитозина) и Г®Т (окислительное повреждение гуанина), вследствие чего, возможно, мтДНК богаты АТ-парами. Кроме того, все мтДНК обладают интересным свойством - они не метилируются, в отли-чие от ядерных и прокариотических ДНК. Известно, что метилирование (време-нная химическая модификация нуклеотидной последовательности без наруше-ния кодирующей функции ДНК) - один из механизмов программируемой инактивации генов.

Размеры и строение молекул ДНК в органеллах

Структура

Масса, млн.

дальтон

Примечания

охон

дриа

Животные

Кольцевая

У каждого отдельного вида все молекулы одного размера

Высшие ра

стения

Кольцевая

Варьирует

У всех изученных видов имеются разные по величине кольцевые ДНК, в которых общее содержание генетической информации соответ-ствует массе от 300 до 1000 млн. дальтон в зависимости от вида

Грибы:

Простейшие

Кольцевая

Кольцевая

Кольцевая

Линейная

Хлор

опла

стов

Водоросли

Кольцевая

Кольцевая

Высшие

растения

Кольцевая

У каждого отдельного вида найдены молекулы только одного

Относительное количество ДНК органелл в некоторых клетках и тканях

Организм

Ткань или

тип клеток

Число мол-л ДНК/органел-

Число орга-

нелл в

клетке

Доля ДНК орга-нелл во всей

ДНК клетки, %

охон

дриа

Клетки линии L

Яйцеклетка

Хлор

опла

стов

Вегетативные диплоидные клетки

Кукуруза

Функционирование митохондриального генома

Что же особенного в механизмах репликации и транскрипции ДНК митохондрий млекопитающих?

Комплементарий" href="/text/category/komplementarij/" rel="bookmark">комплементарные цепи в мтДНК значительно различаются по удельной плотности, поскольку содержат неодинаковое количе-ство “тяжелых” пуриновых и “легких” пиримидиновых нуклеотидов. Так они и называются - H (heavy - тяжелая) и L (light - легкая) цепь. В начале репли-кации молекулы мтДНК образуется так называемая D-петля (от англ. Displace-ment loop - петля смещения). Эта структура, видимая в электронный микро-скоп, состоит из двуцепочечного и одноцепочечного (отодвинутой части Н-цепи) участков. Двуцепочечный участок формируется частью L-цепи и компле-ментарным ей вновь синтезированным фрагментом ДНК длиной 450-650 (в зависимости от вида организма) нуклеотидов, имеющим на 5"-конце рибонук-леотидную затравку, которая соответствует точке начала синтеза Н-цепи (oriH). Синтез L-цепи начинается лишь тогда, когда дочерняя Н-цепь доходит до точки ori L. Это обусловлено тем, что область инициации репликации L-цепи доступ-на для ферментов синтеза ДНК лишь в одноцепочечном состоянии, а следовате-льно, только в расплетенной двойной спирали при синтезе Н-цепи. Таким обра-зом, дочерние цепи мтДНК синтезируются непрерывно и асинхронно (рис.3).

Рис 3. Схема репликации мтДНК млекопитающих. Сначала формируется D-петля, затем синтезируется дочерняя Н-цепь, потом начинается синтез дочерней L-цепи.

Кон-це гена 16S рРНК (рис.4). Таких коротких транскриптов в 10 раз больше, чем длинных. В результате созревания (процессинга) из них образуются 12S рРНК и 16S рРНК, участвующие в формировании митохондриальных рибосом, а так-же фенилаланиновая и валиновая тРНК. Из длинных транскриптов вырезаются остальные тРНК и образуются транслируемые мРНК, к 3"-концам которых при-соединяются полиадениловые последовательности. 5"-концы этих мРНК не кэ-пируются, что необычно для эвкариот. Сплайсинга (сращивания) не происхо-дит, поскольку ни один из митохондриальных генов млекопитающих не содер-жит интронов.

Рис 4. Транскрипция мтДНК человека, содержащей 37 генов. Все транскрипты начинают синтезироваться в районе ori H. Рибосомные РНК вырезаются из длинного и короткого транскриптов Н-цепи. тРНК и мРНК образуются в результате процессинга из транскриптов обеих цепей ДНК. Гены тРНК обозначены светло-зеленым цветом.

Хотите узнать какие еще сюрпризы способен преподнести митохон-дриальный геном? Отлично! Читаем дальше!..

Лидерную и 3"-некодирующую области, как и большинство ядерных мРНК. Ряд генов содержит еще и интроны. Так, в гене box, кодирующем цитохром-оксидазу b, имеется два интрона. Из первичного РНК-транскрипта автокатали-тически (без участия каких-либо белков) вырезается копия большей части пер-вого интрона. Оставшаяся РНК служит матрицей для образования фермента ма-туразы, участвующей в сплайсинге. Часть ее аминокислотной последовательно-сти закодирована в оставшихся копиях интронов. Матураза вырезает их, разру-шая свою собственную мРНК, копии экзонов сшиваются, и образуется мРНК для цитохромоксидазы b (рис.5). Открытие такого феномена заставило пере-смотреть представление об интронах, как о “ничего не кодирующих последова-тельностях”.

Рис 5. Процессинг (созревание) мРНК цитохромоксидазы b в митохондриях дрожжей. На первом этапе сплайсинга образуется мРНК, по которой синтезируется матураза, необходимая для второго этапа сплайсинга.

При изучении экспрессии митохон-дриальных генов Trypanosoma brucei обнаружилось удивительное отклонение от одной из основных аксиом молекулярной биологии, гласящей, что после-довательность нуклеотидов в мРНК в точности соответствует таковой в коди-рующих участках ДНК. Оказалось, мРНК одной из субъединиц цитохром-с-оксидазы редактируется, т. е. после транскрипции изменяется ее первичная структура - вставляется четыре урацила. В результате образуется новая мРНК, служащая матрицей для синтеза дополнительной субъединицы фермента, пос-ледовательность аминокислот в которой не имеет ничего общего с последова-Вирус" href="/text/category/virus/" rel="bookmark">вирусов , грибов, расте-ний и животных. Английский исследователь Беррел сопоставил структуру од-ного из митохондриальных генов теленка с последовательностью аминокислот в кодируемой этим геном субъединице цитохромоксидазы. Оказалось, что гене-тический код митохондрий крупного рогатого скота (как и человека) не просто отличается от универсального, он “идеален”, т. е. подчиняется следующему пра-вилу: “если два кодона имеют два одинаковых нуклеотида, а третьи нуклеоти-ды принадлежат к одному классу (пуриновых - А, Г, или пиримидиновых - У, Ц), то они кодируют одну и ту же аминокислоту”. В универсальном коде есть два исключения из этого правила: триплет АУА кодирует изолейцин, а кодон АУГ - метионин, в то время как в идеальном коде митохондрий оба эти трип-лета кодируют метионин; триплет УГГ кодирует лишь триптофан, а триплет УГА - стоп-кодон. В универсальном коде оба отклонения касаются прин-ципиальных моментов синтеза белка: кодон АУГ - инициирующий, а стоп-кодон УГА останавливает синтез полипептида. Идеальный код присущ не всем описанным митохондриям, но ни у одной из них нет универсального кода. Мож-но сказать, что митохондрии говорят на разных языках, но никогда - на языке ядра.

Различия между “универсальным” генетическим кодом и двумя митохондриальными кодами

Кодон

Митохондриальный

код млекопитающих

Митохондриальный

код дрожжей

Универсальный

Как уже говорилось, в митохондриальном геноме позвоночных есть 22 ге-на тРНК. Каким же образом такой неполный набор обслуживает все 60 кодонов для аминокислот (в идеальном коде из 64 триплетов четыре стоп-кодона, в уни-версальном - три)? Дело в том, что при синтезе белка в митохондриях упроще-ны кодон-антикодонные взаимодействия - для узнавания используется два из трех нуклеотидов антикодона. Таким образом, одна тРНК узнает все четыре представителя кодонового семейства, отличающиеся только третьим нуклеоти-дом. Например, лейциновая тРНК с антикодоном ГАУ встает на рибосоме на-против кодонов ЦУУ, ЦУЦ, ЦУА и ЦУГ, обеспечивая безошибочное включе-ние лейцина в полипептидную цепь. Два других лейциновых кодона УУА и УУГ узнаются тРНК с антикодоном ААУ. В целом, восемь разных молекул тРНК узнают восемь семейств по четыре кодона в каждом, и 14 тРНК узнают разные пары кодонов, каждая из которых шифрует одну аминокислоту.

Важно, что ферменты аминоацил-тРНК-синтетазы, ответственные за при-соединение аминокислот к соответствующим тРНК митохондрий, кодируются в ядре клетки и синтезируются на рибосомах эндоплазматической сети. Таким образом, у позвоночных животных все белковые компоненты митохондриаль-ного синтеза полипептидов зашифрованы в ядре. При этом синтез белков в ми-тохондриях не подавляется циклогексимидом, блокирующим работу эвкариоти-ческих рибосом, но чувствителен к антибиотикам эритромицину и хлорамфени-колу, ингибирующим белковый синтез в бактериях. Этот факт служит одним из аргументов в пользу происхождения митохондрий из аэробных бактерий при симбиотическом образовании эвкариотических клеток.

Значение наличия собственной генетической системы для митохондрий

Почему митохондриям необходима собственная генетическая система, тогда как другие органеллы, например пероксисомы и лизосомы ее не имеют? Этот вопрос совсем не тривиален, так как поддержание отдельной генетической сис-темы дорого обходится клетке, если учесть необходимое количество дополни-тельных генов в ядерном геноме. Здесь должны быть закодированы рибосом-ные белки, аминоацил-тРНК-синтетазы, ДНК - и РНК-полимеразы, ферменты процессинга и модификации РНК и т. д. Большинство изученных белков из митохондрий отличаются по аминокислотной последовательности от своих аналогов из других частей клетки, и есть основание полагать, что в этих органе-ллах очень мало таких белков, которые могли бы встретиться еще где-нибудь. Это означает, что только для поддержания генетической системы митохондрий в ядерном геноме должно быть несколько десятков дополнительных генов. При-чины такого “расточительства” неясны, и надежда на то, что разгадка будет найдена в нуклеотидной последовательности митохондриальной ДНК, не опра-вдалась. Трудно представить себе, почему образующиеся в митохондриях бел-ки должны непременно синтезироваться именно там, а не в цитозоле.

Обычно существование генетической системы в энергетических органеллах объясняют тем, что некоторые из синтезируемых внутри органеллы белков слишком гидрофобны, чтобы пройти сквозь митохондриальную мембрану из-вне. Однако изучение АТР-синтетазного комплекса показало, что такое объясне-ние неправдоподобно. Хотя отдельные белковые субъединицы АТР-синтетазы весьма консервативны в ходе эволюции, места их синтеза изменяются. В хлоропластах несколько довольно гидрофильных белков, в том числе четыре из пяти субъединиц F1-ATPазной части комплекса, образуются на рибосомах внутри органеллы. Напротив, у гриба Neurospora и в животных клетках весьма гидрофобный компонент (субъединица 9) мембранной части АТРазы синтези-руется на рибосомах цитоплазмы и лишь после этого переходит в органеллу. Различную локализацию генов, кодирующих субъединицы функционально эквивалентных белков у разных организмов, трудно объяснить с помощью какой бы то ни было гипотезы, постулирующей определенные эволюционные преимущества современных генетических систем митохондрий и хлоропластов.

Учитывая все вышесказанное, остается только предположить, что генетическая система митохондрий представляет собой эволюционный тупик. В рамках эндо-симбиотической гипотезы это означает, что процесс переноса генов эндосимбионта в ядерный геном хозяина прекратился раньше, чем был полностью завершен.

Цитоплазматическая наследственность

Последствия цитоплазматической передачи генов для некоторых животных, в том числе и для человека, более серьезны, нежели для дрожжей. Две сливающиеся гаплоидные дрожжевые клетки имеют одинаковую величину и вносят в образующуюся зиготу одинаковое количество митохондриальной ДНК. Таким образом, у дрожжей митохондриальный геном наследуется от обоих родителей, которые вносят равный вклад в генофонд потомства (хотя, спустя несколько генераций отдельные потомки нередко будут содержать митохондрии только одного из родительских типов). В отличие от этого у высших животных яйцеклетка вносит в зиготу больше цитоплазмы чем спермий, а у некоторых животных спермии могут вообще не вносить цитоплазмы. Поэтому можно думать, что у высших животных митохондриальный геном будет передаваться только от одного родителя (а именно по материнской линии); и действительно, это было подтверждено экспериментами. Оказалось, например, что при скрещивании крыс двух лабораторных линий с митохондриальной ДНК, слегка различающейся по пocледовательности нуклеотидов (типы А и В), получается потомство, содержа-

щее митохондриальную ДНК только материнского типа.

Цитоплазматическая наследственность, в отличие от ядерной, не под-чиняется законам Менделя. Это связано с тем, что у высших животных и расте-ний гаметы от разных полов содержат несопоставимые количества митохон-дрий. Так, в яйцеклетке мыши имеется 90 тыс. митохондрий, а в сперматозоиде - лишь четыре. Очевидно, что в оплодотворенной яйцеклетке митохондрии преимущественно или только от женской особи, т. е. наследование всех мито-хондриальных генов материнское. Генетический анализ цитоплазматической наследственности затруднен из-за ядерно-цитоплазматических взаимодействий. В случае цитоплазматической мужской стерильности мутантный митохон-дриальный геном взаимодействует с определенными генами ядра, рецессивные аллели которых необходимы для развития признака. Доминантные аллели этих генов как в гомо-, так и в гетерозиготном состоянии восстанавливают фертиль-ность растений вне зависимости от состояния митохондриального генома.

Хотелось бы остановиться на механизме материнского наследования генов путем приведения конкретного примера. Для того чтобы окончательно и бесповоротно понять механизм неменделевского (цитоплазматического) наследования митохондриальных генов, рассмотрим, что происходит с такими генами, когда две гаплоидные клетки сливаются, образуя диплоидную зиготу. В случае когда одна дрожжевая клетка несет мутацию, определяющую резистентность митохондриального белкового синтеза к хлорамфениколу, а другая - клетка дикого типа - чувствительна к этому антибиотику: мутантные гены легко выявить, выращивая дрожжи на среде с глицеролом, использовать который способны только клетки с интактными митохондриями; поэтому в присутствии хлорамфеникола на такой среде смогут расти только клетки, несущие мутантный ген. Наша диплоидная зигота вначале будет иметь митохондрии как мутантного, так и дикого типа. От зиготы в результате митоза отпочкуется диплоидная дочерняя клетка, которая будет содержать лишь небольшое число митохондрий. После нескольких митотических циклов в конце концов какая-то из новых клеток получит все митохондрии либо мутантного, либо дикого типа. Поэтому все потомство такой клетки будет иметь генетически идентичные митохондрии. Такой случайный процесс, в результате которого образуется диплоидное потомство содержащее митохондрии только одного типа, называют митотическо й се грегацие й . Когда диплоидная клетка с одним лишь типом митохондрий претерпевает мейоз, все четыре дочерние гаплоидные клетки получают одинаковые митохондриальные гены. Этот тип наследования называют неменде лев ским или цитоплазматическим в отличие от менделевского наследования ядерных генов. Передача генов по цитоплазматическому типу означает, что изучаемые гены находятся в митохондриях.

Изучение геномов митохондрий, их эволюции, идущей по специфическим законам популяционной генетики, взаимоотношений между ядерными и мито-хондриальными генетическими системами, необходимо для понимания слож-ной иерархической организации эвкариотической клетки и организма в целом.

С определенными мутациями в митохондриальной ДНК или в ядерных генах, контролирующих работу митохондрий, связывают некоторые наслед-ственные болезни и старение человека. Накапливаются данные об участии де-фектов мтДНК в канцерогенезе. Следовательно, митохондрии могут быть ми-шенью химиотерапии рака. Имеются факты о тесном взаимодействии ядерного и митохондриального геномов в развитии ряда патологий человека. Множес-твенные делеции мтДНК обнаружены у больных с тяжелой мышечной слабос-тью, атаксией, глухотой, умственной отсталостью, наследующихся по аутосомно-доминантному типу. Установлен половой диморфизм в клинических проявлениях ишемической болезни сердца, что скорее всего обусловлено мате-ринским эффектом - цитоплазматической наследственностью. Развитие ген-ной терапии внушает надежду на исправление дефектов в геномах митохон-дрий в обозримом будущем.

Как известно, для того чтобы проверить функцию одного из компонентов многокомпонентной системы, необходимой становится ликвидация даного компонента с последующим анализом произошедших изменений. Так как темой даного реферата является указание роли материнского генома для развития потомка, логично было бы узнать о последствиях нарушений в составе митохондриального генома вызванных различными факторами. Инструментом для изучения вышеуказанной роли оказался мутационный процесс, а интересующими нас последствиями его действия стали т. н. митохондриальные болезни.

Митохондриальные болезни представляют собой пример цитоплазмати-ческой наследственности у человека, а точнее «органелльной наследствен-ности». Это уточнение следует сделать, т.к. теперь доказано существование, по крайней мере, у некоторых организмов, цитоплазматических наследственных детерминант , не связанных с клеточными органеллами, - цитогенов(-Вечтомов, 1996).

Митохондриальные болезни - гетерогенная группа заболеваний, обусловленных генетическими, структурными, биохимическими дефектами митохондрий и нарушением тканевого дыхания. Для постановки диагноза митохондриального заболевания важен комплексный генеалогический, клинический, биохимический, морфологический и генетический анализ. Основным биохимическим признаком митохондриальной патологии является развитие лактат-ацидоза, обычно выявляется гиперлактатацидемия в сочетании с гиперпируватацидемией. Число различных вариантов достигло 120 форм. Отмечается стабильное повышение концентрации молочной и пировиноградной кислот в цереброспинальной жидкости.

Митохондриальные болезни (МБ) представляют собой существенную про-блему для современной медицины. По способам наследственной передачи среди МБ выделяют заболевания, наследуемые моногенно по менделевскому типу, при которых в связи с мутацией ядерных генов либо нарушаются структура и функционирование митохондриальных белков, либо изменяется экспрессия митохондриальной ДНК, а также болезни, вызываемые мутациями митохондри-альных генов, которые в основном передаются потомству по материнской линии.

Данные морфологических исследований, свидетельствующие о грубой патологии митохондрий: анормальная пролиферация митохондрий, полимор-физм митохондрий с нарушением формы и размеров, дезорганизация крист, скопления аномальных митохондрий под сарколеммой, паракристаллические включения в митохондрии, наличие межфибриллярных вакуолей

Формы митохондриальных заболеваний

1 . Митохондриальные болезни, вызванные мутациями митохондриальной ДНК

1.1.Болезни, обусловленные делециями митохондриальной ДНК

1.1.1.Синдром Кернса-Сейра

Заболевание проявляется в возрасте 4-18 лет, прогрессирующая наружная офтальмоплегия, пигментный ретинит, атаксия, интенционный тремор, атриовентрикулярная блокада сердца, повышение уровня белка в цереброспи-нальной жидкости более 1 г\л, "рваные" красные волокна в биоптатах скелет-ных мышц

1.1.2.Синдром Пирсона

Дебют заболевания с рождения или в первые месяцы жизни, иногда возможно развитие энцефаломиопатий, атаксии, деменции, прогрессирующей наружной офтальмоплегии, гипопластическая анемия , нарушение экзокринной функции поджелудочной железы, прогрессирующее течение

2 .Болезни, обусловленные точковыми мутациями митохондриальной ДНК

Материнский тип наследования, острое или подострое снижение остроты зре-ния на один или оба глаза, сочетание с неврологическими и костно-суставными нарушениями, микроангиопатия сетчатки, прогрессирующее течение с возмо-жностью ремиссии или восстановления остроты зрения, дебют заболевания в возрасте 20-30 лет

2.2.Синдром NAPR (невропатия, атаксия, пигментный ретинит)

Материнский тип наследования, сочетание нейропатии, атаксии и пигментного ретинита, задержка психомоторного развития, деменция, наличие "рваных" красных волокон в биоптатах мышечной ткани

2.3.Синдром MERRF (миоклонус-эпилепсия, "рваные" красные волокна)

Материнский тип наследования, дебют заболевания в возрасте 3-65 лет, мио-клоническая эпилепсия, атаксия, деменция в сочетании с нейросенсорной глу-хотой, атрофией зрительных нервов и нарушениями глубокой чувствительно-сти, лактат-ацидоз, при проведении ЭЭГ обследования выявляются генерализо-ванные эпилептические комплексы, "рваные" красные волокна в биоптатах скелетных мышц, прогрессирующее течение

2.4.Синдром MELAS (митохондриальная энцефаломиопатия, лактат-ацидоз, инсультоподобные эпизоды)

Материнский тип наследования, дебют заболевания в возрасте до 40 лет, непе-реносимость физических нагрузок, мигренеподобные головные боли с тошно-той и рвотой, инсультоподобные эпизоды, судороги, лактат-ацидоз, "рваные" красные волокна в биоптатах мышц, прогрессирующее течение.

3 .Патология, связанная с дефектами межгеномной коммуникации

3.1.Синдромы множественных делеций митохондриальной ДНК

Блефароптоз, наружная офтальмоплегия, мышечная слабость, нейросенсорная глухота, атрофия зрительных нервов, прогрессирующее течение, "рваные" крас-ные волокна в биоптатах скелетных мышц, снижение активности ферментов дыхательной цепи.

3.2.Синдром делеции митохондриальной ДНК

Аутосомно-рецессивный тип наследования

Клинические формы:

3.2.1.Фатальная инфантильная

а) тяжелая печеночная недостаточность б)гепатопатия в)мышечная гипотония

Дебют в периоде новорожденности

3.2.2.Врожденная миопатия

Выраженная мышечная слабость, генерализованная гипотония, кардиомиопа-тия и судороги, поражение почек, глюкозурия, аминоацидопатия, фосфатурия

3.2.3.Инфантильная миопатия

возникает в первые 2 года жизни, прогрессирующая мышечная слабость, атро-фия проксимальных групп мышц и утрата сухожильных рефлексов, течение быстро прогрессирующее, летальный исход в первые 3 года жизни.

4 .Митохондриальные болезни, обусловленные мутациями ядерной ДНК

4.1.Заболевания, связанные с дефектами дыхательной цепи

4.1.1.Дефицит комлекса 1 (NADH:CoQ-редуктаза)

Начало заболевания до 15 лет, синдром миопатии, задержка психомоторного развития, нарушение сердечно-сосудистой системы, судороги, резистентные к терапии, множественные неврологические нарушения, прогрессирующее тече-ние

4.1.2.Дефицит комплекса 2 (сукцинат-CoQ-редуктаза)

Характеризуется синдромом энцефаломиопатии, прогрессирующие течение, су-дороги, возможно развитие птоза

4.1.3.Дефицит комплекса 3 (CoQ-цитохром С-оксидоредуктаза)

Мультисистемные нарушения, поражение различных органов и систем, с вовле-чением центральной и периферической нервной системы, эндокринной систе-мы, почек, прогрессирующее течение

4.1.4.Дефицит комплекса (цитохром С-оксидаза)

4.1.4.1.Фатальный инфантильный врожденный лактат-ацидоз

Митохондриальная миопатия с почечной недостаточностью или кардиомиопа-тия, дебют в неонатальном возрасте, выраженные дыхательные нарушения, диффузная мышечная гипотония, течение прогрессирующее, летальный исход на первом году жизни.

4.1.4.2.Доброкачественная инфантильная мышечная слабость

Атрофии, при адекватном и своевременном лечении возможна быстрая стаби-лизация процесса и выздоровление к 1-3 годам жизни

5 .Синдром Менкеса (трихополиодистрофия)

Резкая задержка психомоторного развития, отставание в росте, нарушение рос-та и дистрофические изменения волос,

6 . Митохондриальные энцефаломиопатии

6.1.Синдром Лея (подострая невротизирующая энцефаломиелопатия)

Проявляется после 6 месяцев жизни, мышечная гипотония, атаксия, нистагм, пирамидные симптомы, офтальмоплегия, атрофия зрительных нервов, часто от-мечается присоединение кардиомиопатии и легкого метаболического ацидоза

6.2.Синдром Альперса (прогрессирующая склерозирующая полидистрофия)

Дегенерация серого вещества мозга в сочетании с циррозом печени, дефицит комплекса 5 (АТФ-синтетаза), задержка психомоторного развития, атаксия, деменция, мышечная слабость, течение заболевания прогрессирующее, небла-гоприятный прогноз

6.3.Дефицит Коэнзима-Q

Метаболические кризы, мышечная слабость и утомляемость, офтальмоплегия, глухота, снижение зрения, инсультоподобные эпизоды, атаксия, миоклонус-эпилепсия, поражение почек: глюкозурия, аминоацидопатия, фосфатурия, эндо-кринные нарушения, прогрессирующее течение, снижение активности фермен-тов дыхательной цепи

7 .Заболевания, связанные с нарушением метаболизма молочной и пировиноградной кислот

7.1.Дефицит пируваткарбоксилазы Аутосомно-рецессивный тип наследования, дебют заболевания в неоната-льном периоде, симптомокомплекс "вялого ребенка", судороги, резистентные к терапии, высокие концентрации кетоновых тел в крови, гипераммониемия, ги-перлизинемия, снижение активности пируваткарбоксилазы в скелетных мышцах

7.2.Дефицит пируватдегидрогеназы

Проявление в неонатальном периоде, черепно-лицевая дизморфия, судороги, резистентные к терапии, нарушение дыхания и сосания, симптомокомплекс "вя-лого ребенка", дисгинезии мозга, выраженный ацидоз с высоким содержанием лактата и пирувата

7.3.Снижение активности пируватдегидрогеназы

Проявление на первом году жизни, микроцефалия, задержка психомоторного развития, атаксия, мышечная дистония, хореоатетоз, лактат-ацидоз с высоким содержанием пирувата

7.4.Дефицит дигидролипоилтрансацетилазы

Аутосомно-рецессивный тип наследования, дебют заболевания в неонатальном периоде, микроцефалия, задержка психомоторного развития, мышечная гипотония с последующим повышением мышечного тонуса, атрофия дисков зрительных нервов, лактат-ацидоз, снижение активности дигидролипоилтранс-ацетилазы

7.5.Дефицит дигидролипоилдегидрогеназы

Аутосомно-рецессивный тип наследования, дебют заболевания на первом году жизни, симптомокомплекс "вялого ребенка", дисметаболические кризы со рво-той и диареей, задержка психомоторного развития, атрофия дисков зрительных нервов, лактат-ацидоз, повышение содержания в сыворотке крови аланина, α-кетоглутарата, α-кетокислот с разветвленной цепью, снижение активности ди-гидролипоилдегидрогеназы

8 .Заболевания, обусловленные дефектами бета-окисления жирных кислот

8.1.Недостаточность Ацетил-CoA-дегидрогеназы с длинной углеродной цепью

Аутосомно-рецессивный тип наследования, дебют заболевания в первые месяцы жизни, метаболические кризы со рвотой и диареей, симптомокомплекс "вялого ребенка", гипогликемия, дикарбоксиловая ацидурия, снижение актив-ности ацетил-CoA-дегидрогеназы жирных кислот с длинной углеродной цепью

8.2.Недостаточность Ацетил-CoA-дегидрогеназы со средней углеродной цепью

Аутосомно-рецессивный тип наследования, дебют заболевания в неонатальном периоде или первые месяцы жизни, метаболические кризы со рвотой и диареей,

мышечная слабость и гипотония, часто развивается синдром внезапной смерти, гипогликемия, дикарбоксиловая ацидурия, снижение активности ацетил-CoA-дегидрогеназы жирных кислот со средней углеродной цепью

8.3. Недостаточность Ацетил-CoA-дегидрогеназы жирных кислот с короткой углеродной цепью

Аутосомно-рецессивный тип наследования, различный возраст дебюта заболевания, снижение толерантности к физическим нагрузкам, метаболичес-кие кризы со рвотой и диареей, мышечная слабость и гипотония, увеличение экскреции с мочой метилсукциновой кислоты, ацетил-CoA-дегидрогеназы жирных кислот с короткой углеродной цепью

8.4.Множественная недостаточность Ацетил-CoA-дегидрогеназ жирных кислот

Неонатальная форма : черепно-лицевая дизморфия, дисгинезии мозга, тяжелая гипогликемия и ацидоз, злокачественное течение, снижение активности всех ацетил-СоА-дегидрогеназ жирных кислот,

Инфантильная форма: симптомокосплекс "вялого ребенка", кардиомиопатия, метаболические кризы, гипогликемия и ацидоз

8.5.Снижение активности всех ацетил-СоА-дегидрогеназ жирных кислот

Форма с поздним дебютом: периодические эпизоды мышечной слабости, мета-болические кризы, гипогликемия и ацидоз менее выражены, интеллект сохра-нен,

9 .Ферментопатии цикла Кребса

9.1.Дефицит фумаразы

Аутосомно-рецессивный тип наследования, дебют заболевания в неонатальном периоде или периоде новорожденности, микроцефалия, генерализованная мы-шечная слабость и гипотония, эпизоды летаргии, быстро прогрессирующая эн-цефалопатия, неблагоприятный прогноз

9.2.Дефицит сукцинатдегидрогеназы

Редкое заболевание, характеризующееся прогрессирующей энцефаломиопатией

9.3.Дефицит альфа-кетоглутаратдегидрогеназы

Аутосомно-рецессивный тип наследования, неонатальный дебют заболевания, микроцефалия, симптомокомплекс "вялого ребенка", эпизоды летаргии, лактат-ацидоз, быстро прогрессирующее течение, снижение содержания ферментов цикла Кребса в тканях

9.4.Синдромы дефицита карнитина и ферментов его метаболизма

Дефицит карнитин-пальмитоилтрансферразы-1, аутосомно-рецессивный тип наследования, ранний дебют заболевания, эпизоды не кетонемической гипогли-кемической комы, гепатомегалия, гипертриглицеридемия и умеренная гиперам-мониемия, снижение активности карнитин-пальмитоилтрансферразы-1 в фибробластах и клетках печени

9.5.Дефицит карнитин-ацилкарнитин-транслоказы

Ранний дебют заболевания, сердечно-сосудистые и дыхательные нарушения, симптомокомплекс "вялого ребенка", эпизоды летаргии и комы, повышение концентрации эфиров карнитина и длинной углеродной цепью на фоне сниже-ния свободного карнитина в сыворотке крови, снижение активности карнитин-ацилкарнитин-транслоказы

9.6.Дефицит карнитин-пальмитоилтрансферразы-2

Аутосомно-рецессивный тип наследования, мышечная слабость, миалгии, миоглобинурия, снижение активности карнитин-пальмитоилтрансферразы-2 в скелетных мышцах

Аутосомно-рецессивный тип наследования, миопатический симптомокомплекс, эпизоды вялости и летаргии, кардиомиопатия, эпизоды гипогликемии, снижение уровня карнитина в сыворотке крови и увеличение его экскреции с мочой.

Проанализировав такой ‘страшный’ список патологий, связанных с теми или другими изменениями функционирования митохондриального(и не только) генома возникают определенные вопросы. Что же собой представляют продукты митохондриальных генов и в каких именно супермега-жизненноважных клеточных процессах они принимают участие?

Как оказалось, некоторые из вышеперечисленных патологий могут возни-кать при нарушениях синтеза 7 субъединиц НАДН-дегидрогеназного комплек-са, 2 субъединиц АТФ-синтетазы, 3 субъединиц цитохром-с-оксидазы и 1 субъединицы убихинол-цитохром-с-редуктазы(цитохром b), которые и являют-ся генными продуктами митохондрий. Исходя из этого можно сделать вывод о существовании ключевой роли данных белков в процессах клеточного дыхания, окисления жирных кислот и синтеза АТФ, переноса электронов в электронтран-спортной системе внутренней мт мембраны, функционирования антиоксидант-ной системы и т. д.

Судя по последним данным о механизмах апоптоза, многие ученые пришли к выводу о наличии центра контроля апоптоза именно...

Роль митохондриальных белков также была показана при применении антибиотиков, блокирующих мт синтез. Если клетки человека в культуре ткани обработать антибиотиком, например тетрациклином или хлорамфениколом, то после одного-двух делений их рост прекратится. Это связано с ингибированием митохондриального белкового синтеза, приводящим к появлению дефектных митохондрий и как следствие к недостаточному образованию АТР. Почему же тогда антибиотики можно использовать при лечении бактериальных инфекций? Есть несколько ответов на этот вопрос:

1. Некоторые антибиотики (такие, как эритромицин) не проходят через внутрен-нюю мембрану митохондрий млекопитающих.

2. Большинство клеток нашего тела не делятся или делятся очень медленно, поэтому столь же медленно происходит и замена существующих митохондрий новыми (во многих тканях половина митохондрий заменяется примерно за пять дней или еще дольше). Таким образом, количество нормальных митохондрий снизится до критического уровня только в том случае, если блокада митохондриального белкового синтеза будет поддерживаться на протяжении многих дней.

3. Определенные условия внутри ткани препятствуют проникновению некоторых препаратов в митохондрии наиболее чувствительных клеток. Например, высокая концентрация Са2+ в костном мозге приводит к образованию Са2+-тетрациклинового комплекса, который не может проникнуть в быстро делящиеся (и потому наиболее уязвимые) предшественники клеток крови.

Эти факторы дают возможность использовать некоторые препараты, ингиби-рующие митохондриальный синтез белка, в качестве антибиотиков при лечении высших животных. Только два таких препарата оказывают побочное действие: длительное лечение большими дозами хлорамфеникола может привести к нарушению кроветворной функции костного мозга (подавить образование эритроцитов и лейкоцитов), а длительное применение тетрациклина - к поврежде-нию кишечного эпителия. Но в обоих случаях еще не вполне ясно, вызываются ли эти побочные эффекты блокадой биогенеза митохондрий или какими-то иными причинами.

Вывод

Структурно-функциональные особенности мт генома состоят в следу-ющем. Во-первых, установлено, что мтДНК передается от матери всем ее

потомкам и от ее дочерей всем последующим поколениям, но сыновья не передают свою ДНК (материнское наследование). Материнский характер

наследования мтДНК, вероятно, связан с двумя обстоятельствами: либо доля отцовских мтДНК так мала (по отцовской линии может передаваться не

более одной молекулы ДНК на 25 тыс. материнских мтДНК), что они не могут быть выявлены существующими методами, либо после оплодотворения блоки-руется репликация отцовских митохондрий. Во-вторых, отсутствие комбинати-вной изменчивости - мтДНК принадлежит только одному из родителей, сле-довательно рекомбинационные события, характерные для ядерной ДНК в мейо-зе, отсутствуют, а нуклеотидная последовательность меняется из поколения в поколение только за счет мутаций. В-третьих, мтДНК не имеет интронов

(большая вероятность, что случайная мутация поразит кодирующий район ДНК), защитных гистонов и эффективной ДНК-репарационной системы -все это определяет в 10 раз более высокую скорость мутирования, чем в ядерной ДНК. В-четвертых, внутри одной клетки могут сосуществовать одновременно нормальные и мутантные мтДНК -явление гетероплазмии (присутствие толь-ко нормальных или только мутантных мтДНК называется гомоплазмией). Наконец, в мтДНК транскрибируются и транслируются обе цепи, а по ряду ха-рактеристик генетический код мтДНК отличается от универсального (UGA кодирует триптофан, AUA кодирует метионин, AGA и AGG являются стоп-

кодонами).

Эти свойства и вышеуказанные функции мт-генома сделали иссле-дование изменчивости нуклеотидной последовательности мтДНК неоценимым инструментом для врачей, судебных медиков, биологов-эволюционистов,

представителей исторической науки в решении своих специфических задач.

Начиная с 1988 г., когда было открыто, что мутации генов мтДНК лежат в основе митохондриальных миопатий (J. Y. Holt et al., 1988) и наследственной оптической нейропатии Лебера (D. C. Wallace, 1988), дальнейшее систематичес-кое выявление мутаций мт-генома человека привело к формированию концеп-ции митохондриальных болезней (МБ). В настоящее время патологические му-тации мтДНК открыты в каждом типе митохондриальных генов.

Список литературы

1. Скулачев, митохондрии и кислород, Сорос. образоват. журн.

2. Основы биохимии: В трех томах, М.: Мир, .

3. Nicholes D. G. Bioenergetics, An Introd. to the Chemiosm. Th., Acad. Press, 1982.

4. Stryer L. Biochemistry, 2nd ed. San Fransisco, Freeman, 1981.

5. Скулачев биологических мембран. М., 1989.

6. , Ченцов ретикулум: Строение и некоторые функции // Итоги науки. Общие проблемы биологии. 1989

7. Ченцов цитология. М.: Изд-во МГУ, 1995

8. , Сфера компетенции митохон-дриального генома // Вестн. РАМН, 2001. ‹ 10. С. 31-43.

9. Holt I. J, Harding A. E., Morgan -Hughes I. A. Deletion of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature, 1988, 331:717-719.

10. и др. Геном человека и гены предрасположенности. СПб., 2000

11. , Митохондриальный геном. Новосибирск, 1990.

12. // Сорос. образоват. журн. 1999. №10. С.11-17.

13. Роль симбиоза в эволюции клетки. М., 1983.

14. // Сорос. образоват. журн. 1998. №8. С.2-7.

15. // Сорос. образоват. журн. 2000. №1. С.32-36.

Киевский Национальный Университет им. Тараса Шевченка

Биологический факультет

Реферат

на тему:

“Роль материнского генома в развитии потомка”

с туд е нта IV курса

кафедры биохимии

Фролова Артема

Киев 2004

План :

Вступление...............................................................................1

Симбиотическая теория происхождения митохондрий......2

Роль клеточного ядра в биогенезе митохондрий...................................5

Транспортные системы митохондрий.....................................................7

Размеры и форма митохондриальных геномов..................10

Функционирование митохондриального генома...............14

Значение наличия собственной генетической системы для митохондрий..............................................................................19

Цитоплазматическая наследственность..............................20

Об авторах

Наталия Васильевна Сернова — кандидат физико-математических наук, магистр протеомики и биоинформатики Женевского университета. Научные интересы: биоинформатика, регуляция транскрипции, сравнительная геномика, эволюция млекопитающих.

Михаил Сергеевич Гельфанд — доктор биологических наук, член Европейской академии, заместитель директора Института проблем передачи информации им. А. А. Харкевича РАН, профессор факультета биоинженерии и биоинформатики Московского государственного университета им. М. В. Ломоносова. Область научных интересов — биоинформатика, сравнительная и функциональная геномика, молекулярная эволюция, системная биология, метагеномика.

Практически во всех клетках эукариот есть митохондрии - органеллы, которые нужны в первую очередь для синтеза АТФ. История симбиоза бактерий, родственных риккетсиям, и предка эукариот, в результате которого возникли митохондрии, очень интересна, однако здесь речь пойдет не о ней. Для нас сейчас будет важно лишь то, что у митохондрий есть свой собственный геном (у млекопитающих его размер 15–20 тыс. пар нуклеотидов), что у животных он передается строго по материнской линии и что в каждой клетке присутствуют десятки и даже тысячи митохондрий, а стало быть, в любом образце количество копий митохондриального генома на несколько порядков превышает число копий любого фрагмента ядерного генома. Это особенно существенно при анализе древних образцов, в которых сохранилось мало неповрежденной ДНК.

Мы будем обсуждать интрогрессию митохондриальных геномов. Интрогрессия - это форма гибридизации, при которой гены одного вида проникают в генофонд другого. В результате образуются гибриды первого поколения, способные к возвратному скрещиванию с одним или обоими родительскими видами. Если возвратное скрещивание происходит многократно в последовательных поколениях, то может возникнуть поток вариантов некоторых генов от одного вида к другому. Такой прием часто используется в селекции, когда требуется передать некий признак от одного вида другому, например устойчивость к болезням от дикого вида к культурному сорту: производят многократные возвратные скрещивания с культурным сортом, а отбор ведут по данному признаку. Постепенно в большинстве локусов остаются только аллели культурного сорта, а локусы, от которых зависит желаемый признак, наследуются от дикого вида - и в результате получается новый устойчивый сорт.

Однако интрогрессия может происходить и в результате естественной гибридизации. Известно, что межвидовая гибридизация характерна для 10% видов животных, в частности для 6% видов млекопитающих . Если все потомки родителей, принадлежащих к разным видам, далее скрещиваются с представителями только одного из них, причем многократно в ряде последовательных поколений, то возникает однонаправленный поток вариантов генов от вида, который представляет собой донора, в популяционную систему, служащую реципиентом. Таким образом, интрогрессия - это такая гибридизация, при которой поток генов и рекомбинация доходят до видового уровня. При этом из-за упомянутых особенностей наследования митохондриального генома у животных и из-за отсутствия рекомбинации их митохондриальной ДНК оказывается легко следить за интрогрессией именно митохондриальных генов. Особый интерес представляет так называемый митохондриальный захват, когда в какой-либо популяции все митохондриальные геномы происходят от одного вида, а все ядерные - от другого. Следует отметить, что это довольно строгое определение: никогда нельзя гарантировать, что в геноме гибридов не сохранилось фрагмента ядерного генома второго вида хотя бы у части особей, поскольку для этого надо проводить подробное генотипирование большого числа ядерных геномов, что долго и дорого.

Интрогрессия митохондриальных геномов ведет к тому, что филогении, построенные по митохондриальным и ядерным маркерам, оказываются несогласованными. В недавнем обзоре обобщили 126 случаев полной и неполной митохондриальной интрогрессии у животных. Большинство из этих случаев описано уже в XXI веке. Причины интрогрессии могут быть разными: селективное преимущество, демографические особенности, смещение зоны гибридизации, влияние человека, у насекомых - заражение вольбахией и разнообразные связанные с этим эффекты, например искажение соотношения полов. Чаще всего, по-видимому, действует комбинация причин. Особый интерес представляют случаи полной интрогрессии, когда на всем ареале подавляющее большинство особей имеет митохондрии, геномы которых практически совпадают с митохондриальными геномами другого вида. Такого не замечали у земноводных, зато наблюдали четыре подобных случая у птиц, пять - у рыб и два - у насекомых. Четыре случая было отмечено у млекопитающих: митохондриальный геном тара (Hemitragus jemlahicus ) у предка диких европейских коз Capra spp. , белохвостого оленя (Odocoileus virginianus ) у чернохвостого (O. hemionus ) в Северной Америке , расы Carlit обыкновенной землеройки, или бурозубки (Sorex araneus ), у иберийской (S. granarius ) и, наконец, бурого медведя (Ursus arctos ) у белого (U. maritimus ) . О медведях речь пойдет ниже, а сначала обсудим слонов.

Африканские слоны: один или два вида?

По морфологическим особенностям африканские слоны делятся на две группы: саванные (Loxodonta africana ), которые живут в сухой саванне, и лесные (L. cyclotis ), которые обитают во влажных лесах. Вопрос о статусе этих групп до сих пор остается открытым. Некоторые авторы считают эти группы подвидами , в то время как другие относят их к разным видам [8–13 ] . Расхождение лесных и саванных слонов произошло от 2,5 млн лет назад (по ядерной ДНК) до 5,5 млн лет назад (по митохондриальной ДНК) .

Ареалы этих двух групп не разделены, и существует обширная зона контакта, на которой возможна гибридизация. В ряде популяций, например, в регионе Серенгети в Восточной Африке, большинство саванных слонов имеют митохондриальный геном лесных . Это объясняют межвидовыми скрещиваниями лесных самок с саванными самцами с последующей интрогрессией. Возможный сценарий, который учитывает хорошо изученные особенности социального поведения африканских слонов , выглядит следующим образом [8–10 ].

Слоны живут большими стадами - до нескольких десятков особей. Стадо включает только самок разного возраста и их неполовозрелое потомство и возглавляется старшей самкой-матриархом. Все слоны в стаде родственны по материнской линии и имеют одинаковый митохондриальный геном. Самцы слонов, достигшие половой зрелости (12 лет), изгоняются из стада. Они тоже могут объединяться в группы, которые состоят из самцов разного возраста и где главенствуют крупные пожилые самцы.

Когда самка достигает репродуктивного возраста (10–12 лет) и у нее начинается эстральный цикл, она уходит из стада на период до нескольких недель для встречи с самцом. Затем возвращается в материнское стадо и через 22 месяца рожает детеныша, которого выкармливает около двух лет, т.е. в течение почти четырех лет самка репродуктивного возраста не готова к новому контакту. Для спаривания самки предпочитают крупных самцов.

Рассредоточение слонов по группам не приводит к полному разделению родственников мужского и женского пола, поэтому слоны способны распознавать сородичей. Учитывая, что саванные самцы предпочитают избегать инбридинга и что они крупнее лесных слонов и репродуктивно над ними доминируют, а эстральные самки встречаются редко, не исключено, что в таких условиях лесные самки заполняют освободившуюся нишу и составляют конкуренцию саванным самкам. Здесь уместно вспомнить, что корреляция между внутривидовым потоком генов и межвидовым отрицательна .

После спаривания с саванным самцом лесная самка возвращается в материнское стадо лесных слонов. Через 22 месяца на свет появляется гибрид с митохондриальным геномом лесных слонов и ядерной ДНК саванных и лесных слонов поровну. Гибридная самка начнет передавать митохондриальный геном следующим поколениям по материнской линии. Каждое возвратное скрещивание лесных или гибридных самок с саванными самцами будет уменьшать долю ядерной ДНК лесного слона наполовину. И через много поколений у гибридов ядерная ДНК саванного слона полностью заменит ядерную ДНК лесного слона. К тому же саванные самцы почти вдвое крупнее лесных, а значит, пользуются преимуществом при спаривании в том числе и с лесными и гибридными самками. Кроме того, гибридные самцы могут обладать пониженной плодовитостью согласно правилу Холдейна: если при скрещивании разных подвидов или рас жизнеспособность потомства зависит от пола, более редким (или вообще отсутствующим) будет гетерогаметный пол, то есть у млекопитающих - самцы .

Эта модель хорошо объясняет, почему в областях, далеких от зоны контакта двух групп, практически нет ни слонов с промежуточной морфологией, ни особей со смешанным - саванным с лесным - ядерным геномом, в том числе среди саванных слонов с митохондриальным геномом лесного типа. Однако она наталкивается на противоречие: поскольку самки слона возвращаются в материнское стадо, гибридные самки оказываются в стаде с лесными, а значит, не могут передать свою митохондриальную ДНК саванным слонам. Тем более не могут этого сделать гибридные самцы, ведь митохондриальный геном наследуется только по материнской линии.

Возможно, этот парадокс объясняется изменениями популяционной структуры и ареала слонов под влиянием климатических изменений и деятельности человека - хозяйственной и охоты, в том числе браконьерской. Есть наблюдения, что, когда численность натального стада у саванных слонов по тем или иным причинам падает, матриарх может принимать самок из других, неродственных, групп . Так, например, в Уганде, где популяции слонов существенно сократились из-за браконьерства, самки с разными митохондриальными гаплотипами сформировали новые социальные группы . Кроме того, раз гибридные самки имеют ядерную ДНК саванного слона, они могут быть морфологически близки к саванным сородичам, а потому их не изгоняют из стада, когда они оказываются в зоне симпатрии.

Однако недавний подробный анализ четырех популяций слонов из контактных зон показал более сложную картину (рис. 1). Среди гибридных особей ни одна не оказалась гибридом первого поколения. Это доказывает, что гибриды саванных и лесных слонов фертильны. Однако, когда построили филогенетические деревья по маркерам митохондрий (строго материнское наследование) и Y-хромосом (строго отцовское), стало очевидно, что гибридизация шла в обоих направлениях: геномы и саванных, и лесных слонов образовали по две четко выделенные ветви, так что геномы гибридных особей могли принадлежать и одной, и другой.

Тем не менее все авторы последних исследований склонны считать лесных и саванных слонов разными видами [ , ]. По мнению Эрнста Майра, гибридизация в зоне контакта необязательно означает, что мы имеем дело с одним видом - гибридами. Генетическая цельность двух видов вполне может сохраняться . В случае африканских слонов это и наблюдается: вдали от зоны контакта нет никаких следов смешения, кроме митохондриальной интрогрессии, а морфологически виды, несмотря на нее, различны.

Бурые и белые медведи: один или два вида?

Ответ кажется очевидным. Конечно, два - достаточно сходить в зоопарк и посмотреть. Однако...

Ученые из Института арктической биологии Университета Аляски исследовали популяцию бурых медведей с архипелага Александра у берегов Аляски (с островов Адмиралти, Баранова и Чичагова, которые по первым латинским буквам называют островами АВС; рис. 2). В 1996 г. они заметили, что митохондриальные геномы этих медведей больше похожи на митохондриальные геномы белых медведей (Ursus maritimus ), чем бурых (U. arctos ) из других популяций . Несколько гипотез пытались это объяснить: происхождением белых медведей из древней прибрежной популяции бурых, которая сохранилась только на островах АВС , интрогрессией митохондриальных генов бурых медведей с островов АВС в геном белых и, наоборот, интрогрессией митохондриальных генов белых медведей в геном бурых [ , ]. Предположение, что белые медведи недавно произошли от бурых, казалось бы, подтвердилось, когда секвенировали митохондриальный геном древнего (130–110 тыс. лет назад) белого медведя из челюстной кости, найденной на архипелаге Шпицберген . Оказалось, этот геном очень близок к точке ответвления митохондриальных геномов современных белых медведей и ближайших к ним бурых медведей с островов ABC.

Получается, белые медведи - это не отдельный вид, а ветвь бурых медведей, которая отделилась сравнительно недавно, не более 150 тыс. лет назад, и сильно изменилась морфологически? Более обширный анализ митохондриальных геномов указывает на еще более фантастический сценарий. Действительно, митохондриальные геномы древних белых медведей из Скандинавии ближе всего к геномам медведей с островов АВС. В то же время митохондриальные геномы современных белых медведей существенно ближе к геномам вымершей ветви бурых медведей из Ирландии - расхождение этих двух линий произошло менее 40 тыс. лет назад (рис. 3). Следует отметить, что эти же данные интерпретировали заново уже иначе - как интрогрессию митохондриальных генов белого медведя в геном бурого . Правда, это не объясняет, почему эта ветка находится в глубине большой клады бурых медведей.

Анализ же ядерных геномов показывает, что белые медведи разделились с бурыми примерно 600 тыс. лет назад (рис. 4). Согласно этой работе, в ядерных геномах не наблюдается следов (недавних) гибридизаций между белыми и бурыми медведями, однако согласно другим исследованиям 5–10% ядерного генома бурых медведей с островов АВС происходят из генома белого медведя, а расхождение видов отнесено на 4 млн лет назад . Вообще, имеет смысл отметить важное последствие гибридизации, которое, однако, существенно затрудняет датировки: она ведет к тому, что различные геномные локусы имеют разную историю. Так, еще в одной работе расхождение бурых и белых медведей датируется примерно 400 тыс. лет назад, хотя также отмечен существенный поток генов белого медведя в геном медведей с островов АВС. Наконец, следует заметить, что во многих работах отмечается меньшая эффективная численность популяции белых медведей по сравнению с бурыми и эффект бутылочного горлышка - эпизоды резкого сокращения численности популяции после разделения с бурыми [ , , ]. Расхождение Y-хромосом белого и бурого медведя, для которых не заметно признаков интрогрессии, датируется приблизительно 1,1 млн лет назад (рис. 5). Вопрос о потоке ядерных генов бурого медведя в геном белого остается противоречивым: отмечались как следы слабого потока , так и полное его отсутствие . При этом поток генов белого медведя шел и в геномы материковых бурых медведей с Аляски, хотя и был слабее . Полный список оценок дан в обзоре .

Положительный отбор в геномах белых медведей затронул гены, связанные с формированием жировой ткани, развитием сердечной мышцы и свертываемостью крови, а также пигментацией меха . В то время как интрогрессии в геном бурого медведя подвергся ген ALDH7A1 , который регулирует осмотический стресс: это могло иметь приспособительное значение для прибрежной (островной) популяции бурых медведей .

Один из главных, принципиальных открытых вопросов, который слабо обсуждается в литературе, - произошло ли полное закрепление интрогрессировавших митохондриальных генов бурого медведя во всей популяции белых медведей под действием отбора или же в силу случайного дрейфа. Второй вопрос - была ли первоначально популяция бурых медведей с островов АВС популяцией белых медведей с почти тотальной интрогрессией ядерных генов бурых медведей за счет самцов, приплывавших с материка , или же популяцией бурых медведей, в геном которой интрогрессировали митохондриальные гены белых медведей в результате одной или нескольких гибридизаций с самками белого медведя.

Ко второму вопросу стоит добавить, что географическое распределение митохондриальных гаплотипов и белых медведей, и бурых высоко структурировано, что отражает привязанность самок к месту рождения, тогда как гаплотипы Y-хромосомы перемешаны из-за частых миграций самцов . С одной стороны, это косвенно свидетельствует о том, что случайный дрейф митохондриального генома должен быть затруднен. С другой стороны, его могли облегчать колебания численности и эффект бутылочного горлышка.

Хотя основные факты - полную интрогрессию митохондриальных генов бурого медведя в геном белого (возможно, неоднократную), значительный поток ядерных генов белого медведя в геном бурых медведей с островов АВС (и возможно, с Аляски), значительные колебания численности белых медведей - по-видимому, в целом можно считать твердо установленными, детали этой эволюционной истории нуждаются в прояснении. Как и всегда, нужно больше геномов - и современных, из разных популяций, и древних.

И снова люди

Пожалуй, одна из основных загадок геномной эволюции древних людей - происхождение денисовцев. Мы уже писали об этом вопросе в предыдущих статьях [ , ], однако полезно вернуться к нему именно в контексте обсуждаемых здесь несовпадений истории ядерных и митохондриальных геномов.

Денисовцы по ядерному геному - сестринская группа с неандертальцами, однако разошлись с ними вскоре после отделения от кроманьонцев. Оценки неточны, но в первом приближении разделение кроманьонцев и денисовцев + неандертальцев произошло примерно 650 тыс. лет назад, а денисовцев и неандертальцев - около 450 тыс. лет назад. Нам известен один ядерный геном из Денисовой пещеры на Алтае (возраст - примерно 50 тыс. лет) и несколько митохондриальных геномов оттуда же, самый старый из которых датируется 110 тыс. лет назад. Кроме того, известны фрагменты денисовского генома, которые сохранились в геномах австранезийцев. Денисовский вариант гена EPAS1 практически зафиксировался в популяции тибетцев. Все это указывает на обширность ареала денисовцев.

А вот по митохондриальному геному денисовцы разделились с ветвью неандертальцев + кроманьонцев около миллиона лет назад. Этот геном ближе всего к митохондриальному геному человека возрастом около 430 тыс. лет из пещеры Сима де лос Уэсос в Испании. Однако получается парадокс: ядерный геном из пещеры Сима де лос Уэсос ближе к неандертальскому, чем к денисовскому (авторы оригинальной статьи не приводят оценок времени расхождения). Таким образом, нет никакого простого сценария, который бы включал лишь интрогрессию, чтобы объяснить эти наблюдения. Авторы предполагают, что митохондриальные геномы из Денисовой пещеры и Сима де лос Уэсос - прямые потомки геномов древнего выходца из Африки, предка неандертальцев и денисовцев, кем бы он ни был с антропологической точки зрения, а митохондриальные геномы неандертальцев - результат поздней интрогрессии африканского же происхождения. В пользу этой гипотезы говорит то, что в геноме алтайского неандертальца обнаружены кроманьонские фрагменты, причем это следы гибридизации, предшествовавшей выходу из Африки предка современных европейцев и азиатов . Однако такие фрагменты отсутствуют в геномах других неандертальцев, в то время как митохондриальные геномы всех неандертальцев очевидно образуют единую ветвь на филогенетическом дереве. Кроме того, возникают проблемы с датировкой: носитель кроманьонских фрагментов в геноме алтайского неандертальца отделился от остальных кроманьонцев примерно 250 тыс. лет назад (до начала разделения современных популяций в Африке), а разделение митохондриальных ветвей кроманьонцев и неандертальцев датируется примерно 500 тыс. лет назад. Получается, это не могло быть результатом одного события. Альтернативное объяснение состоит в том, что источник митохондриальной ДНК денисовцев и человека из пещеры Сима де лос Уэсос - неизвестные представители рода Homo (H. erectus ?). Однако оно также не дает простого ответа на вопрос, где, когда и с кем произошла эта гибридизация.

Удивительно не то, что мы не знаем ответов на многие вопросы. Удивительно то, что мы можем эти вопросы задавать и надеемся получить на них ответы.

Н. В. Сернова благодарна своей маме Наталии Владимировне Серновой за вдохновение и помощь. М. С. Гельфанд благодарен фонду «Эволюция» за поддержку научно-популярных лекций, подготовка к которым помогла лучше осознать изложенный материал.

Работа выполнена при поддержке Российского научного фонда (проект 14-24-00155).

Литература
. Mallet J. Hybridization as an invasion of the genome // Trends Ecol. Evol. 2005. V. 20. P. 229–237.
. Toews D. P. L., Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals // Mol. Ecol. 2012. V. 21. P. 3907–3930.
. Ropiquet A., Hassanin A. Hybrid origin of the Pliocene ancestor of wild goats // Mol. Phylogenet. Evol. 2006. V. 41. P. 395–404.
. Cathey J. C., Bickham J. W., Patton J. C. Introgressive hybridization and nonconcordant evolutionary history of maternal and paternal lineages in North American deer // Evolution . 1998. V. 52. P. 1224–1229.
. Yannic G., Dubey S., Hausser J. et al. Additional data for nuclear DNA give new insights into the phylogenetic position of Sorex granarius within the Sorex araneus group // Mol. Phylogenet. Evol. 2010. V. 57. P. 1062–1071.
. Edwards C. J., Suchard M. A., Lemey P. et al. Ancient hybridization and an Irish origin for the modern polar bear matriline // Curr. Biol. 2011. V. 21. P. 1251–1258.
. Debruyne R. A case study of apparent conflict between molecular phylogenies: the interrelationships of African elephants // Cladistics . 2005. V. 21. P. 31–50.
. Cyto-nuclear genomic dissociation and the African elephant species question // Quat. Int. 2007. V. 169–170. P. 4–16.
. Roca A. L., Ishida Y., Brandt A. L. et al. Elephant natural history: a genomic perspective // Annu. Rev. Anim. Biosci. 2015. V. 3. P. 139–167.
. Roca A. L., Georgiadis N., O’Brien S. J. Cytonuclear genomic dissociation in African elephant species // Nat. Genet. 2005. V. 37. P. 96–100.
. Grubb P., Groves C. P., Dudley J. P. et al. Living African elephants belong to two species: Loxodonta africana (Blumenbach, 1797) and Loxodonta cyclotis (Matschie, 1900) // Elephant . 2000. V. 2. P. 1–4.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта